If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8x^2-24x+224=0
a = -8; b = -24; c = +224;
Δ = b2-4ac
Δ = -242-4·(-8)·224
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7744}=88$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-88}{2*-8}=\frac{-64}{-16} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+88}{2*-8}=\frac{112}{-16} =-7 $
| 4.905t^2-6.946t+0.65=0 | | 13t=-65 | | 3x+2(x-6)=28 | | 0.66=0.5^x | | n+0.4n=98 | | -0,75p-2=0,25p | | 4/5x+2=12 | | 6b+18=66 | | 20x-3=8x+9 | | 5x(2-4)=2(5x-4) | | .21+.06x=2.55 | | (x+7)+(2x+8)+63=180 | | 2n-44=-4 | | -4=44−2n | | 9y+27=3y-9 | | 4(x-3)=1/2(4x-12) | | 4(z−83)=24 | | z÷(-4)=-12 | | -15m=75 | | d-14=-38 | | v+74=-45 | | 5x-100=-15x+100 | | X^2-40x+156=0 | | -3-x/2=-8 | | 4x-36=8x-7 | | (4/40)x^2-4x+15.6=0 | | 2x+(6-3x)=24 | | 1/2x=-44 | | -7x–5–7x=-3–14x–11 | | 180=93+3x+18 | | 8=5y−12 | | 13+3(5c-2)=29 |